Deep Temporal Appearance-Geometry Network for Facial Expression Recognition

نویسندگان

  • Heechul Jung
  • Sihaeng Lee
  • Sunjeong Park
  • Injae Lee
  • Chunghyun Ahn
  • Junmo Kim
چکیده

Temporal information can provide useful features for recognizing facial expressions. However, to manually design useful features requires a lot of effort. In this paper, to reduce this effort, a deep learning technique which is regarded as a tool to automatically extract useful features from raw data, is adopted. Our deep network is based on two different models. The first deep network extracts temporal geometry features from temporal facial landmark points, while the other deep network extracts temporal appearance features from image sequences . These two models are combined in order to boost the performance of the facial expression recognition. Through several experiments, we showed that the two models cooperate with each other. As a result, we achieved superior performance to other state-of-the-art methods in CK+ and Oulu-CASIA databases. Furthermore, one of the main contributions of this paper is that our deep network catches the facial action points automatically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NIRExpNet: Three-Stream 3D Convolutional Neural Network for Near Infrared Facial Expression Recognition

Facial expression recognition (FER) under active near-infrared (NIR) illumination has the advantages of illumination invariance. In this paper, we propose a three-stream 3D convolutional neural network, named as NIRExpNet for NIR FER. The 3D structure of NIRExpNet makes it possible to extract automatically, not just spatial features, but also, temporal features. The design of multiple streams o...

متن کامل

Video-Based Facial Expression Recognition Using Hough Forest

This paper introduces a new video-based facial expression recognition system. Facial expression analysis encounters two major problems: non-rigid shape deformation and person-specific facial expression appearance. Our method analyzes the video sequence to recognize facial expression and locate the temporal apex of the facial expression by using modified Hough forest and minimizing the influence...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Facial Expression Recognition for HCI Applications

Facial expression plays an important role in cognition of human emotions (Fasel, 2003 & Yeasin, 2006). The recognition of facial expressions in image sequences with significant head movement is a challenging problem. It is required by many applications such as human-computer interaction and computer graphics animation (Cañamero, 2005 & Picard, 2001). To classify expressions in still images many...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1503.01532  شماره 

صفحات  -

تاریخ انتشار 2015